$${\frac{cx + d}{(x - a)(x - b)(x - c)} = \frac{A}{x - a} + \frac{B}{x - b} + \frac{C}{x - c}}$$
$${\frac{dx + f}{(x - a)(x^2 + bx + c)} = \frac{A}{x - a} + \frac{Bx + C}{x^2 + bx + c}}$$
$${\frac{cx + d}{(x - a)(x - b)^2} = \frac{A}{x - a} + \frac{B}{x - b} + \frac{C}{(x - b)^2}}$$
$${\frac{cx + d}{(x - a)(x^2 + bx + c)^2} = \frac{A}{x - a} + \frac{Bx + C}{x^2 + bx + c} + \frac{Dx + E}{(x^2 + bx + c)^2}}$$